Reg. No.:

Name :

Mid-Term Examinations – October 2021

Programme	: B.Tech	Semester	:	Fall 2021-22
Course	: Engineering Physics	Code	:	PHY1001
Faculty	: Dr. Shweta Mukherjee	Slot/ Class No.	:	D11+D12+D13/0008
Time	: 1 ¹ / ₂ hours	Max. Marks	:	50

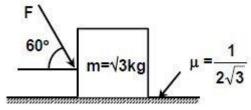
Answer all the Questions

Q.No.	Sub. Sec.		

Question Description

Marks

10


5

10

- 1 (a) Two bodies A and B of masses 5 kg and 10 kg in contact with each other rest on a table against a rigid wall. The coefficient of friction between the bodies and the table is 0.15.A force of 200N is applied horizontally at A. What are i) The reaction of the wall?
 - ii) The action, reaction forces between A and B?
 - iii) What happens when the wall is removed?
 - iv) Does the answer to ii) change, when the bodies are in motion?
 - v) Draw a free body diagram showing all the cases

Ignore the difference between μ_s and $\mu_{k.}$

(b)

Determine the maximum value of the force F such that the block shown in the

arrangement above, does not move

- A machine gun has a mass of 20kg. It fires 35g bullets at the rate of 400 bullets per minute with a speed of 400m/s. What force must be applied to the gun to keep it in position 5
- 3 How phase velocity is related to group velocity? Deduce the relation and show that in the absence of dispersion phase velocity is equal to group velocity for
- A particle is trapped in a one dimensional box of length ' β '. The wave function associated with the particle is given by

$$\Psi(\mathbf{x}) = \sqrt{\frac{2}{\beta}} \sin \frac{\pi x}{\beta}.$$
 Calculate the probability of finding the particle between $\beta/5 < \mathbf{x} < \beta/2$

5 When we enter the nanoparticle paradigm physical and chemical properties change. Discuss the properties of nanoparticles in detail. 10